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Modulated structures of flexoelectric origin in nematic liquid crystals
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A structural instability of flexoelectric origin is predicted in a homeotropic cell, of insulating nematic liquid
crystal, by the action of an electric field applied in the direction of the initially nonperturbed nematic director.
The instability gives rise to a two-dimensional periodic structure. The critical field to observe the predicted
modulated structure as well as the wavelength at the threshold are evaluated. Both vary as the inverse square
root of the cell thickness. The role of the dielectric anisotropy on the phenomenon is investigated. Our analysis
is performed in the limit of weak anchoring energy strength, where the extrapolation length is large with
respect to the thickness of the nematic sample.
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I. INTRODUCTION

Liquid crystals are roughly cigar shaped organic m
ecules with anisotropic properties. In the nematic pha
molecules are, on an average, parallel to a mean direc
called the nematic directorn (n251). Therefore, the nem
atic phase possesses long range orientational order an
haves as a uniaxial crystal with its optical axis parallel ton
@1#. Uniformly oriented nematic textures possess invers
symmetry and consequently are not ferroelectric. As sho
by Meyer@2#, the inversion symmetry can break by imposi
a splay or bend curvature distortion to the nematic direc
Therefore, distorted nematic liquid crystals can present
electric polarization, termed flexoelectric polarization: t
nematic equivalent of the piezoelectric polarization obser
in strained solids.

The Cartesian components of the flexoelectric polari
tion are given byPi5 f i jknj ,k , wheref i jk are the component
of the flexoelectric tensor andni , j5]ni /]xj are the spatial
derivatives of the nematic director. In the bulk, nematic l
uid crystals are nonpolar media: the statesn and 2n are
equivalent. This implies thatf i jk is odd inn. By decompos-
ing f i jk in the usual manner@3#, one obtains

f i jk5 f 1ninjnk1 f 2nid jk1 f 3njd ik1 f 4nkd i j . ~1!

Sincen is such thatnjnj51, the parametersf 1 and f 3 do not
contribute toPi . A simple calculation givesPi5 f 2ninj , j
1 f 4nkni ,k @4#. By taking into account thatnj , j5“•n and
that nkni ,k52@n3(“3n)# i , the flexoelectric polarization
can be rewritten asP5 f 2n(“•n)2 f 4n3(“3n). The phe-
nomenological parametersf 2 and f 4 are usually indicated by
e11 ande33, respectively. Finally, the flexoelectric polariza
tion is written as

P5e11n~“•n!2e33n3~“3n!. ~2!

e11 ande33 are known as flexoelectric coefficients.
Long ago it has been shown that inunboundednematic

samples, the coupling of the flexoelectric polarization w
an external electric field can give rise to a two-dimensio
periodic deformation@2,5,6#. For boundednematic samples
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the instability appears above a threshold field when the
electric anisotropy is lower than an upper limit@9#. Up to
now, only the case of infinitelystrong anchoringconditions
on the limiting surfaces of the nematic sample has been c
sidered@9#. In the advent of surface treatments giving rise
weak anchoring@10#, it becomes appealing to extend th
previous studies towards the weak anchoring limit. The a
of the present paper is to analyze, theoretically, the tw
dimensional periodic deformations of flexoelectric origin,
bounded nematic samples, characterized byweak anchoring
energy. In our analysis, the anisotropic part of the surf
tension relevant to the interface, nematic liquid crystal–so
substrate, is considered very weak and treated as a pertu
tion. In this framework, we show that ife111e3350, planar
periodic deformations should be observed in nema
samples, in the low voltage range. We further assume tha
nematic liquid crystal is a perfect insulating material. In th
case, no ionic charges are present in the medium and
bye’s screening length is infinite@7#. In real nematic materi-
als, the conductivity is finite and the ions play an importa
role in the effective electric field distribution inside th
sample. Our model works well only if Debye’s screenin
length is larger than the thickness of the sample. In the
posite case, in which Debye’s screening length is compara
with the thickness of the sample, it is necessary to take
account that the electric field is no longer constant across
sample, and that the charge density of flexoelectric origin
partially screened by the ionic charge density@8#.

In Sec. II, we first consider the case of a dielectrica
compensated nematic liquid crystal. The threshold elec
field to induce the instability, which drives the system fro
the homogeneous state to a modulated one, and the w
length of the modulation at the threshold are deduced in
limit of weak anchoring. The influence of the dielectric a
isotropy on the modulated structure is discussed in Sec.
Section IV is devoted to final remarks and conclusions.

II. MODULATED STRUCTURES IN COMPENSATED
NEMATIC LIQUID CRYSTALS

We consider a nematic liquid crystal cell in the shape o
slab of thicknessd. The Cartesian reference frame used
©2003 The American Physical Society08-1
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our analysis has thez axis, of unit vectork, normal to the
limiting surfaces, atz56d/2. We limit the study to two-
dimensional deformations, where the nematic director
fully characterized by the tilt angleu formed byn with thez
axis. The bulk free energy density of a nematic liquid crys
submitted to an external electric fieldE5Ek is @9#

f 5 1
2 K~u ,x

2 1u ,z
2 !2eEu ,x , ~3!

whereu ,x5]u/]x andu ,z5]u/]z. Expression~3! has been
written by assumingK115K335K, ea5e i2e'50 , wherei
and' refer ton, ande1152e335e. This means that we ar
working in the one-elastic constant approximation and
nematic liquid crystal is assumed to be dielectrically co
pensated. The influence of the dielectric anisotropy on
phenomenon will be considered in the following section. W
assume that the limiting surfaces induce homeotropic al
ment. In the Rapini-Papoular approximation@11#, the rel-
evant surface anchoring energy is written as

f si52 1
2 wi cos2u i , ~4!

where i 5u,l refer to the upper and lower surfaces, atz5
6d/2, respectively. Expression~4! holds only if the surface
polarization can be neglected, as we assume in the follow
This assumption implies that the two extremities of the m
ecules forming the nematic phase have the same chem
affinity with the bounding surfaces@12,13#.

We look for a tilt angle distributionu(x,z) minimizing the
total energy of the sample of the type

u~x1l,z!5u~x,z!12p, ~5!

wherel is the wavelength of the modulated structure. T
total free energy of one period, per unit length along thy
axis, is given by

F5E
0

lE
2d/2

d/2

f dx dz1E
0

l

f sldx1E
0

l

f su dx. ~6!

We defineG5F/K, introduce the reduced coordinatesj
5x/d and h5z/d, and the reduced wavelengthL5l/d,
and write Eq.~6! in the form

G5E
0

LE
21/2

1/2

g dj dh1E
0

L

gsl dj1E
0

L

gsu dj, ~7!

where

g5
f d2

K
5

1

2
~u ,j

2 1u ,h
2 !2

eEd

K
u ,j ~8!

and

gsi5
f sid

K
5

d

2Li
cos2u i . ~9!

Li5K/wi are the extrapolation lengths@14#. The functionu,
we are looking for, is the one minimizing the average ene
per period defined asf5G/L, whereG is given by Eq.~7!
@15#. Standard calculations@16# give the differential equation
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u ,jj1u ,hh50, ~10!

that has to be solved with the boundary conditions

u ,h2
d

2Ll
sin~2u l !50,

u ,h1
d

2Lu
sin~2uu!50. ~11!

In the following, we limit our investigation to the symmetri
case, in whichwl5wu . In this framework,u(j,h)5u(j,
2h) and the boundary conditions reduce to

u ,h1
«

2
sin~2u!50, ~12!

where«5d/L5dw/K, at h51/2.
We assume«!1 and expandu in power series of« as

follows @16#:

u~j,h!5u0~j,h!1«u1~j,h!1O~«2!. ~13!

By substituting expansion~13! into Eqs. ~10! and ~12! we
obtain at the zeroth order in«

u0,jj1u0,hh50,

u0,h50 for h51/2, ~14!

and

u1,jj1u1,hh50,

u1,h1 1
2 sin~2u0!50 for h51/2, ~15!

at the first order in«. We look for a solution of the problem
of the typeu(j1L,h)5u(j,h)12p. Consequently,u0(j
1L,h)5u0(j,h)12p and u i(j1L,h)5u i(j,h), for i
>1. The solutions of Eqs.~14! and ~15! that satisfy these
requirements are

u05mj ~16!

and

u152
1

4m

cosh~2mh!

sinhm
sin~2mj!, ~17!

wherem52p/L is a constant to be determined by imposi
that the total energy of the system has its minimum value.
substituting theu expansion in Eq.~8!, we obtaing5g0
1«g11O(«2), where

g05
1

2
~u0,j

2 1u0,h
2 !2

eEd

K
u0,j ~18!

and

g15u0,ju1,j1u0,hu1,h2
eEd

K
u1,j . ~19!
8-2
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Sinceu05u0(j)5mj, g0 andg1 take the forms

g05
1

2
m22

eEd

K
m ~20!

and

g15S m2
eEd

K D u1,j . ~21!

The functionu1(j,h) is such thatu1(j1L,h)5u1(j,h).
Consequently,g1 does not contribute to the total energyG at
the first order in«. For what concerns the surface contrib
tions we have, at the first order in«,

gsl5gsu52
«

2
cos2~mj!. ~22!

The total energyG, at the first order in the expansion param
eter, is thenG5G01«G11O(«2), where

G05S 1

2
m22

eEd

K
mDL ~23!

and

G152E
0

L

cos2~mj!dj52 1
2 L. ~24!

Finally, the average energy per periodf5G/L is

f5
1

2
m22

eEd

K
m2

1

2
«. ~25!

m is determined by imposing that, at the zeroth order in«, f
is minimum. In this case the minimum off, at the zeroth
order in «, coincides with the one at the first order in th
same parameter. A simple calculation gives

m5
eEd

K
. ~26!

For the modulated structure under consideration, the m
mum value ofG is then

GMS52
1

2 F S eEd

K D 2

1«GL. ~27!

The G energy of the corresponding homogeneous pat
(u50 everywhere! is

GH52«L. ~28!

The modulated structure is stable only ifGMS,GH . This
condition gives

S eEd

K D 2

.«. ~29!

The latter inequality defines a threshold fieldEth(0),
06170
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E.Eth~0!5
K

ed
A«5AKw

e2d
, ~30!

to observe the modulated structure in a compensated nem
liquid crystal. The relevant threshold voltage for the ph
nomenon under consideration is then

Vth~0!5Eth~0!d5AKwd

e2
. ~31!

At the threshold, since«5d/L, the wavelength of the modu
lated structure is

l th~0!52p
d

A«
52pALd. ~32!

According to the above analysis,Vth(0) and l th(0) for a
compensated nematic liquid crystal depend on the thickn
of the sample asAd.

The expressions forEth(0) andl th(0) are valid only if
«!1, and they give the order of magnitude of the critic
field and of the wavelength at the threshold of the instabi
towards the modulated structure. By assumingK;10211 N
@14#, e;10211C m @17#, d;1 mm, «;0.1, which corre-
sponds toL;10 mm, and hencew;1026 J/m2, we obtain
Vth(0)5Eth(0)d;0.3 V, a rather low value. Note that th
corresponding threshold in the case of strong anchorin
two orders of magnitude higher. From this result, we c
conclude that planar periodic deformations in nema
samples weakly anchored induced by a low dc electric v
age are a clear indication thate111e3350. Furthermore, any
dependence of the threshold voltage on the sample thick
should be a signature of departure from strong ancho
conditions. Figure 1 shows the nematic director distribut
in a x-z cross section of the cell at an electric field value
1.5Eth(0). The initially homeotropic cell is distorted unde
the field action and gives rise to planar domains. Then de-
pendence onz appears in the transition region between h
meotropic and planar domains and it is merely concentra
close to the glass plates. Further, then distribution shows
that the transition starts at the middle of the cell.

III. INFLUENCE OF THE DIELECTRIC ANISOTROPY
ON THE MODULATED STRUCTURE

OF FLEXOELECTRIC ORIGIN

Let us consider now the caseea5e i2e'Þ0. In this
framework, the free energy densityf is given by

f 5 1
2 K~u ,x

2 1u ,z
2 !2eEu ,x2 1

2 eaE2 cos2u. ~33!

We consider first the case of positive dielectric anisotro
(ea.0). By operating step by step as in the case ofea50,
we obtain now the free energy densityg as

g5
f d2

K
5

1

2
~u ,j

2 1u ,h
2 !2

eEd

K
u ,j2

1

2
V2 cos2u, ~34!
8-3
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where

V25
eaE2d2

K
5S p

E

Ec
D 2

. ~35!

Ec5(p/d)AK/ea is the critical field for the Freedericks
transition @14#. The bulk differential equation obtained b
minimizing the total energyG is

u ,jj1u ,hh5
V2

2
sin~2u!, ~36!

which has to be solved with the boundary condition~12!, in
the symmetric case under consideration, whereu(j,h)
5u(j,2h). By substituting expansion~13! into Eq. ~36!,
we obtain at the zeroth order in«,

u0,jj1u0,hh5
V2

2
sin~2u0!,

u0,h50 for h51/2, ~37!

and

u1,jj1u1,hh5V2u1 cos~2u0!,

u1,h1 1
2 sin~2u0!50 for h51/2, ~38!

at the first order in«.
The solution of Eq.~37! is h independent. It is given by

the nonlinear ordinary differential equation

d2u0

dj2
2

V2

2
sin~2u0!50. ~39!

FIG. 1. Then distribution in ax-z cross section of the nemati
cell at 1.5Eth(0). d53 mm, «50.3. In the absence of electric field
the nematic cell is homeotropic withn parallel to thez axis.
06170
From Eq.~39!, beside the trivial solutionu050, we obtain

du0

dj
5Ac22V2 cos2u0, ~40!

wherec2.V2 is an integration constant to be determined
imposing that the total energy of the sample is minimu
The wavelength of the modulated structure we are look
for is

L5E
0

2p dc

Ac22V2 cos2c
. ~41!

Routine calculations give, for theG energy at the zeroth
order in«, the expression

G05E
0

2p
Ac22V2 cos2cdc2

1

2
c2L22p

eEd

K
, ~42!

from which the averageG0 energy per periodf05G0 /L is
easily obtained. By minimizingf0 with respect toc2, we get
the equation

E
0

2p
Ac22V2 cos2cdc52p

eEd

K
, ~43!

which definesc2.
As it follows from Eq. ~41!, L→` for c2→V2. In the

limit c25V2, from Eq. ~43! we obtainc5(p/2)(eEd/K).
The conditionc2.V2 is then a condition on the dielectri
anisotropy of the type@9#

ea,ea* 5S p

2 D 2 e2

K
. ~44!

Otherwise, the homogeneous nondistorted state is more
vored. By means of the elliptical functionsE1(k) andE2(k)
defined by

E1~k!5E
0

p/2 dc

A12k2 cos2c
,

E2~k!5E
0

p/2
A12k2 cos2cdc, ~45!

it is possible to rewrite Eq.~41! and ~43! as follows:

L5
1

V
4kE1~k! ~46!

and

1

k
E2~k!5Aea*

ea
, ~47!

respectively, wherek25V2/c2 is the modulus of the ellipti-
cal functions. Equation~47! determinesk5k(ea /ea* ), when
the physical parameters of the nematic liquid crystal
8-4
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known. As it follows from Eqs.~45! and ~47!, in the limit
ea→0, k→(p/2)Aea /ea* . In Fig. 2, we showk vs ea /ea* .
Once k has been determined, Eq.~46! gives L vs V
5p(E/Ec). In Fig. 3, the productLV vs ea /ea* is reported.

The tilt angle profile, at the zeroth order in«, is given by

kE
0

u0(j) dc

A12k2cos2c
5Vj, ~48!

and it is plotted in Fig. 4, fork50.1 andk50.95. As it is
evident from this figure,u0(j) is, practically, a linear func-
tion of the reduced coordinatej, for all values ofk. At the
zeroth order in«, we have that the minimum value of theG
energy, relevant to the modulated structure is, as it follo
from Eqs.~42! and ~43!,

GMS052 1
2 c2L. ~49!

At the same approximation, theG energy of the homoge
neous orientation, withu50, is

FIG. 2. Behavior ofk vs ea /ea* .

FIG. 3. VL vs ea /ea* .
06170
s

GH052 1
2 V2L. ~50!

Sincec>V, it follows that GMS0<GH0 , i.e., at the zeroth
order in the expansion parameter, the modulated structu
stable with respect to the homogeneous one.

Let us consider now the energyG at the first order in the
expansion parameter. By substituting Eq.~13! into Eq. ~34!
and taking into account thatu05u0(j) we obtain g5g0
1«g1 , where

g05
1

2 S du0

dj D 2

2
eEd

K

du0

dj
,

g15
du0

dj

]u1

]j
1

1

2
V2u1sin~2u0!2

eEd

K

]u1

]j
. ~51!

It follows that G5G01«G1 , where

G05E
0

LE
21/2

1/2

g0djdh,

G15E
0

LE
21/2

1/2

g1djdh2E
0

L

cos2u0 dj. ~52!

A simple calculation allows one to show that

E
0

LE
21/2

1/2

g1djdh50. ~53!

To this end, we have to just note that

du0

dj

]u1

]j
5

]

]j S u1

du0

dj D2u1

d2u0

dj2
. ~54!

By substituting the latter expression intog1 , Eq. ~51! yields

FIG. 4. Tilt angleu0(j), at the zeroth order in the expansio
parameter, vs the reduced coordinatej/L, for k50.1 ~dashed line!,
and k50.95 ~solid line!, which correspond toea /ea* 50.004 and
ea /ea* 50.742, respectively. Note thatu0(j) is, practically, a linear
function of j for all values ofk.
8-5
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g15
]

]j S u1

du0

dj D2u1S d2u0

dj2
2

1

2
V2sin2~2u0!D 2

eEd

K

]u1

]j
.

~55!

The second addendum of this expression is identically z
becauseu0(j) is a solution of Eq.~39!. Consequently,g1 can
be written as

g15
]

]j Fu1S du0

dj
2

eEd

K D G . ~56!

Since u1(j1L,h)5u1(j,h) and (du0 /dj)(j1L,h)
5(du0 /dj)(j,h), the integral ofg1 over one spatial period
vanishes identically. Therefore,G1 reduces to the contribu
tion connected with the anchoring energy. At the first ord
in « and taking into account Eq.~49!, the energyG of the
modulated structure is

GMS52
1

2
c2L2«E

0

L

cos2u0~j!dj, ~57!

while theG energy of the homogeneous pattern is

GH52 1
2 V2L2«L. ~58!

The modulated structure is stable only ifGMS,GH . This
condition yields

c22V2.2«^sin2u0&, ~59!

where

^•••&5
1

LE
0

L

•••dj. ~60!

Equation ~59! defines the threshold field above which t
modulated structure is stable, for a given anchoring ene
w5(K/d)«. As it has been underlined above,u0(j) is, prac-
tically, a linear function of j, for all k. Consequently
^sin2u0&;1/2. In this framework, from the definitionk
5V/c and using Eq.~59!, we obtain the value ofV at the
threshold:

V th5A k2

12k2
«, ~61!

from which the threshold field is calculated,

Eth5
2

p
Aea*

ea

k2

12k2
Eth~0!. ~62!

Eth(0) has been defined in Eq.~30!. Since, as discusse
above,k→(p/2)Aea /ea* when ea→0 then Eth reduces to
Eth(0): thethreshold field for a compensated nematic liqu
crystal given by Eq.~30!.

From Eq.~46!, it follows that the reduced wavelength
the threshold is
06170
ro
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L th54A12k2

«
E1~k!5

2

p
A12k2E1~k!L th~0!. ~63!

In the limit ea→0, the latter equation givesL th52p/A«, as
obtained in the case of a compensated nematic. The de
dence ofL th on the ratioea /ea* is shown in Fig. 5 for a
nematic cell with«5d/L50.1. The transition between th
homogenous state and the stripe pattern state is a sec
order transition and close toea5ea* , L th varies as (1
2ea /ea* )1/2. Note that whenk→1, the elliptic integralE1(k)
diverges logarithmically. Figure 6 showsEth /Eth(0) vs
ea /ea* , which could be useful to compare our theoretic
predictions with experimental data. However, no experim
tal data are available in literature, for theEth5Eth(ea /ea* )
dependence, relevant to periodic instabilities of flexoelec
origin in nematic liquid crystals. The first attempt to rela

FIG. 5. Reduced wavelength at the instability thresholdL th vs
ea /ea* , for a nematic homeotropic cell with«5d/L50.1.

FIG. 6. Reduced threshold fieldEth /Eth(0) vs ea /ea* .
8-6
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the dielectric anisotropy with the threshold field for th
flexoelectric instability has been performed by Barniket al.
long ago@18,19#. Unfortunately, for the compounds invest
gated in Refs.@18,19#, the flexoelectric coefficients have no
been precisely determined. Consequently,ea* are unknown
and we cannot fit the threshold voltage dependence on
dielectric anisotropy using our results. Moreover, the nem
cells used by Barniket al. have strong planar anchoring, i.e
d.L, and therefore their results cannot be used to test
model. However, as it follows from Eq.~48!, the modulusk
depends only onea /ea* . Hence, from Eqs.~62! and~63! we
derive that the threshold voltage and the wavelength of
deformation at the threshold depend on the thickness of
sample asAd, as in the case of a compensated nematic liq
crystal. These dependencies could allow to test, experim
tally, our model.

In the analysis reported above we have assumedea.0. In
the opposite case, of negative dielectric anisotropy, the
electric contribution to theg energy density given by Eq
~34! is 1(1/2)V2cos2u, where V25ueauE2d2/K
5(pE/Ec)

2 and Ec5(p/d)AK/ueau. In this case on the
right-hand side of Eqs.~36!–~38! V2 is changed to2V2,
and Eq.~39! takes the form

d2u0

dj2
1

V2

2
sin~2u0!50. ~64!

By operating as in the case ofea.0, instead of Eq.~40! we
obtain now

du0

dj
5AC22V2 sin2u0, ~65!

from which we derive thatC2.V2. In the present case
condition ~44! becomes

ueau,ea* 5S p

2 D 2 e2

K
. ~66!

The main equations of the problem are identical to the o
reported above withE1(k) andE2(k) changed to

E1~k!5E
0

p/2 dc

A12k2 sin2c
,

06170
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E2~k!5E
0

p/2
A12k2 sin2cdc, ~67!

wherek25V2/C2.

IV. FINAL REMARKS AND CONCLUSION

To observe experimentally the predicted instability, sp
cial cautions have to be taken. In fact, as underlined abo
our analysis works well only if the nematic liquid crystal ca
be considered as a perfect insulating material. In the oppo
case, when ions are present in the liquid crystal, it is nec
sary to take into account that the electric field is no long
constant across the sample, due to the double layer forma
of ionic clouds close to the electrodes@20#. The presence of
the ions is equivalent to a renormalization of the effect
bulk electric field and of the effective anchoring energy@21–
23#. To observe our periodic instability, it is necessary
avoid selective ions adsorption and to use a pulsed sq
electric field with a frequency such that the ions cannot p
ticipate in the phenomenon.

In conclusion, we have theoretically analyzed the pos
bility to observe modulated structures of flexoelectric orig
in bounded nematic liquid crystal samples. Our investigat
has been performed by assuming thate111e3350, and that
the anchoring energyw of the solid substrate–nematic liqui
crystal interface is very weak and can be treated as a pe
bation. In this limit, the tilt angle profile, formed by th
director with the normal to the limiting surfaces, can be e
panded in power series of«5d/L, where L5K/w is the
extrapolation length. We have determined the threshold fi
for the spatially modulated instability, and the wavelength
the threshold. The threshold field varies asA1/d, while the
wavelength at the threshold goes asAd. The influence of the
dielectric anisotropy on the phenomenon has also been
lyzed. The instability can arise only if the dielectric aniso
ropy is lower than an upper limit defined from the mater
constants of the liquid crystal compound. In the case of
unbounded nematic liquid crystal sample, our results confi
the prediction published long ago@2,5,6#.
t.
@1# G. Vertogen and W.H. de Jeu,Thermotropic Liquid Crystals,
Fundamentals~Springer-Verlag, Berlin, 1988!.

@2# R.B. Meyer, Phys. Rev. Lett.22, 918 ~1969!.
@3# A.L. Alexe-Ionescu, Phys. Lett. A180, 456 ~1993!.
@4# G. Barbero and L.R. Evangelista,An Elementary Course on

the Continuum Theory for Nematic Liquid Crystals~World
Scientific, Singapore, 2000!.

@5# C. Fan, Mol. Cryst. Liq. Cryst.13, 9 ~1971!.
@6# S.G. Dmitriev, Zh. Eksp. Teor. Fiz.61, 2049 ~1971! @Sov.

Phys. JETP34, 1093~1972!#.
@7# J. Israelachvili,Intermolecular and Surface Forces~Academic
Press, London, 1992!.

@8# D. Olivero, L.R. Evangelista, and G. Barbero, Phys. Rev. E65,
031721~2002!.

@9# S.A. Pikin, Structural Transformations in Liquid Crystals
~Gordon and Breach, New York, 1991!.

@10# I. Lelidis and G. Barbero, Europhys. Lett.61, 646 ~2003!.
@11# A.A. Sonin, The Surface Physics of Liquid Crystals~Gordon

and Breach, Luxembourg, 1995!.
@12# A.G. Petrov and A.I. Derzanski, Mol. Cryst. Liq. Cryst. Let
8-7



-
ett.

ov,
pl.

G. BARBERO AND I. LELIDIS PHYSICAL REVIEW E67, 061708 ~2003!
41, 41 ~1977!.
@13# S. Ponti, P. Ziherl, C. Ferrero, and S. Zumer, Liq. Cryst.26,

1171 ~1999!.
@14# P.G. de Gennes and J. Prost,The Physics of Liquid Crystals

~Clarendon Press, Oxford, 1994!.
@15# E.B. Priestley, P.J. Wojtowicz, and Ping Sheng,Introduction to

Liquid Crystals~Plenum Press, New York, 1974!, Chap. 8.
@16# L. Elsgolts,Differential Equations and the Calculus of Varia

tions ~MIR, Moscow, 1980!.
@17# L.M. Blinov, M.I. Barnik, H. Ohoka, M. Ozaki, and K.

Yoshino, Phys. Rev. E64, 031707~2001!.
@18# M.I. Barnik, L.M. Blinov, A.N. Trufanov, and B.A. Umanskii,
06170
Zh. Eksp. Teor. Fiz.73, 1936 ~1977! @Sov. Phys. JETP46,
1016 ~1977!#.

@19# M.I. Barnik, L.M. Blinov, A.N. Trufanov, and B.A. Umanskii,
J. Phys.~France! 39, 417 ~1978!.

@20# L.R. Evangelista and G. Barbero, Phys. Rev. E64, 021101
~2001!.

@21# O.A. Gomes, R.C. Falcao, and O.N. Mesquita, Phys. Rev. L
86, 2577~2001!.

@22# V. Boichuk, S. Kucheev, J. Parka, V. Reshetnyak, Y. Reznik
I. Shiyanovskaya, K.D. Singer, and S. Slussarenko, J. Ap
Phys.90, 5963~2001!.

@23# K. Kocevar and I. Musevic, Phys. Rev. E65, 030703~2002!.
8-8


