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Modulated structures of flexoelectric origin in nematic liquid crystals
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A structural instability of flexoelectric origin is predicted in a homeotropic cell, of insulating nematic liquid
crystal, by the action of an electric field applied in the direction of the initially nonperturbed nematic director.
The instability gives rise to a two-dimensional periodic structure. The critical field to observe the predicted
modulated structure as well as the wavelength at the threshold are evaluated. Both vary as the inverse square
root of the cell thickness. The role of the dielectric anisotropy on the phenomenon is investigated. Our analysis
is performed in the limit of weak anchoring energy strength, where the extrapolation length is large with
respect to the thickness of the nematic sample.
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[. INTRODUCTION the instability appears above a threshold field when the di-
electric anisotropy is lower than an upper linh&]. Up to

Liquid crystals are roughly cigar shaped organic mol-now, only the case of infinitelgtrong anchoringconditions
ecules with anisotropic properties. In the nematic phasegn the limiting surfaces of the nematic sample has been con-
molecules are, on an average, parallel to a mean directiogidered9]. In the advent of surface treatments giving rise to
called the nematic directar (n>=1). Therefore, the nem- weak anchoring10], it becomes appealing to extend the
atic phase possesses long range orientational order and kgrevious studies towards the weak anchoring limit. The aim
haves as a uniaxial crystal with its optical axis parallehto of the present paper is to analyze, theoretically, the two-
[1]. Uniformly oriented nematic textures possess inversiordimensional periodic deformations of flexoelectric origin, in
symmetry and consequently are not ferroelectric. As showfounded nematic samples, characterizedviepk anchoring
by Meyer[2], the inversion symmetry can break by imposing energy. In our analysis, the anisotropic part of the surface
a splay or bend curvature distortion to the nematic directortension relevant to the interface, nematic liquid crystal—solid
Therefore, distorted nematic liquid crystals can present asubstrate, is considered very weak and treated as a perturba-
electric polarization, termed flexoelectric polarization: thetion. In this framework, we show that &;;+ e3;=0, planar
nematic equivalent of the piezoelectric polarization observegberiodic deformations should be observed in nematic
in strained solids. samples, in the low voltage range. We further assume that the

The Cartesian components of the flexoelectric polarizanematic liquid crystal is a perfect insulating material. In this
tion are given byP; = f;; n; ,, wheref;;, are the components case, no ionic charges are present in the medium and De-
of the flexoelectric tensor and, ;=dn;/dx; are the spatial bye’s screening length is infini{g]. In real nematic materi-
derivatives of the nematic director. In the bulk, nematic lig-als, the conductivity is finite and the ions play an important
uid crystals are nonpolar media: the statesind —n are  role in the effective electric field distribution inside the
equivalent. This implies thaft;, is odd inn. By decompos- sample. Our model works well only if Debye’s screening

ing fij in the usual mannd3], one obtains length is larger than the thickness of the sample. In the op-
posite case, in which Debye’s screening length is comparable
fije=fininn+ £, 8+ f3n; S+ Fani i (1) with the thickness of the sample, it is necessary to take into

account that the electric field is no longer constant across the
Sincen is such than;n;=1, the parameterf, andf; do not sample, and that the charge density of flexoelectric origin is
contribute toP;. A simple calculation gives?;=f,n;n;;  Ppartially screened by the ionic charge den$By.
+f4nen;  [4]. By taking into account thah; ;=V-n and In Sec. Il, we first consider the case of a dielectrically
that nin; = —[nx(Vxn)];, the flexoelectric polarization compensated nematic liquid crystal. The threshold electric
can be rewritten a®=f,n(V-n)—f,nx(Vxn). The phe- field to induce the instability, which drives the system from

nomenological parametefs andf, are usually indicated by the homogeneous state to a modulated one, and the wave-
e, and €33, respectively. Finally, the flexoelectric polariza- Iength of the modulation at the threshold are deduced in the

tion is written as limit of weak anchoring. The influence of the dielectric an-
isotropy on the modulated structure is discussed in Sec. Ill.
P=e;n(V-n)—ezgnX(VXn). 2) Section 1V is devoted to final remarks and conclusions.

€11 andez; are known as flexoelectric coefficients.

Long ago it has been shown that imboundedhematic
samples, the coupling of the flexoelectric polarization with
an external electric field can give rise to a two-dimensional We consider a nematic liquid crystal cell in the shape of a
periodic deformatio2,5,6. For boundednematic samples, slab of thicknessl. The Cartesian reference frame used in

II. MODULATED STRUCTURES IN COMPENSATED
NEMATIC LIQUID CRYSTALS
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our analysis has the axis, of unit vectork, normal to the 0 ¢+ 0 ,,=0, (10)
limiting surfaces, az=*d/2. We limit the study to two-
dimensional deformations, where the nematic director ighat has to be solved with the boundary conditions
fully characterized by the tilt anglé formed byn with the z
axis. The bulk free energy density of a nematic liquid crystal 0 — isin(ze )=0
submitted to an external electric fielek= Ek is [9] 2L ! '
f=3K(65+6°) —eEb,, (3) d
0.+ 5Sin(20,) =0. (11)
u

where 6 ,=d6/9x and 6 ,= 96/ dz. Expression3) has been

written by assuming(llz_Kggz }i €a=€j—€. =0, where| |, yh0 following, we limit our investigation to the symmetric
andl. ref_er ton, ande, ;= —€g=¢e. This means th.at we are ..se in whichw,=w, . In this framework, 6(£, 7) = 0(¢,
working in the one-elastic constant approximation and the_ 7) and the boundary conditions reduce to

nematic liquid crystal is assumed to be dielectrically com-
pensated. The influence of the dielectric anisotropy on the
phenomenon will be considered in the following section. We
assume that the limiting surfaces induce homeotropic align-
ment. In the Rapini-Papoular approximatiphl], the rel- wheres=d/L=dw/K, at 7=1/2.

evant surface anchoring energy is written as We assumes<1 and expand) in power series of as
4) follows [16]:

— 2
wherei=u,| refer to the upper and lower surfaces,zat 0(&,m) = bo(&,7) +£01(&,7) +O(e).
+d/2, respectively. Expressio@) holds only if the surface By substituting expansiofl3) into Egs.(10) and (12) we
polarization can be neglected, as we assume in the followin btain at the zeroth order i
This assumption implies that the two extremities of the mol-
ecules forming the nematic phase have the same chemical

8 -
0, 5SiN(20)=0, (12)

fsi=—3w; coso;
(13

00’55‘{‘ 60‘””: 0,

affinity with the bounding surfacgd42,13.
We look for a tilt angle distributio®(x,z) minimizing the
total energy of the sample of the type

O(X+N\,z2)=60(X,2)+ 2, (5)

where\ is the wavelength of the modulated structure. The

total free energy of one period, per unit length along yhe
axis, is given by

N (d2 A A
F=f J fdx dz+f fs|dx+J fsudx.
0 J-dr 0 0

We defineG=F/K, introduce the reduced coordinatés
=x/d and »=2z/d, and the reduced wavelength=\/d,
and write Eq.(6) in the form

(6)

A [1/2 A A
o= | gaeant [ ‘ouder [ ‘ande @)
0 —1/2 0 0
where
fd2 1, d
9= gm0t 0 i O ®
and
fgd
9si=¢ —2—Lic0§¢9i. 9)

L;=K/w; are the extrapolation length$4]. The functioné,

6o,=0 for »=1/2, (14
and
016+ 01,,,=0,
01,7+ 35iN(260)=0 for »=1/2, (15)

at the first order ire. We look for a solution of the problem
of the type (&+ A, n)=6(&,n)+2m. Consequentlyfy(é
TA,m)=00(&m)+2m and 6;(§+A,7)=6,(£,7), for i
=1. The solutions of Eqs(14) and (15) that satisfy these
requirements are

and
1 cosh2my) .
b=— 7 %Sm@mf), 17

wherem=2m/A is a constant to be determined by imposing
that the total energy of the system has its minimum value. By
substituting the# expansion in Eq(8), we obtaing=gj
+eg,+0(&?), where

we are looking for, is the one minimizing the average energy

per period defined ag=G/A, whereG is given by Eq.(7)
[15]. Standard calculatiori46] give the differential equation

1, 5 eEd
9025( 051 06,,) — w 0o ¢ (18
and
eEd
91= 0o 014t 00,01 ,— K 01 (19
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Since = 0y(£) =mé, gy andg, take the forms

_1 ) eEd o0
Go=5M = ——m (20
and
eEd
0.= m_T 01'5. (21)

The function 6,(&,7) is such thatd,(é+A,n)=60.(&, 7).
Consequentlyg, does not contribute to the total energyat
the first order ine. For what concerns the surface contribu-
tions we have, at the first order i

t]
Osi=9su= — Eco§(m§). (22

The total energys, at the first order in the expansion param-
eter, is therG=Gy+eG;+O(&?), where

G 1 , eEd A 23
o=l 23
and
A
G,= —f cog(mé)dé=—21A. (24)
0
Finally, the average energy per perigd=G/A is
_ 1 5 eEd 1 25
$=am Mo 9

m is determined by imposing that, at the zeroth ordes,irb

is minimum. In this case the minimum @f, at the zeroth
order ing, coincides with the one at the first order in the
same parameter. A simple calculation gives

eEd
m=——.

- (26)

For the modulated structure under consideration, the min
mum value ofG is then

2
+e&

1

2

eEd

K A.

Gms=— (27)

The G energy of the corresponding homogeneous pattern

(6=0 everywhergis

Gu=—¢A. (28)

The modulated structure is stable onlyGi,s<Gy . This
condition gives

The latter inequality defines a threshold fiélg,(0),

eEd\?
—) >eg, (29

K
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Kw

2q’ (30)

K
E>Ep(0)= a& =

to observe the modulated structure in a compensated nematic
liquid crystal. The relevant threshold voltage for the phe-
nomenon under consideration is then

Kwd
Vin(0) =Eun(0)d=\/ =5~

At the threshold, since=d/L, the wavelength of the modu-
lated structure is

(31)

d

Ve

According to the above analysi¥,,(0) and\;,(0) for a
compensated nematic liquid crystal depend on the thickness
of the sample as/d.

The expressions foE;,(0) and\,(0) are valid only if
e<1, and they give the order of magnitude of the critical
field and of the wavelength at the threshold of the instability
towards the modulated structure. By assumig 10 11 N
[14], e~10 Cm [17], d~1 um, ~0.1, which corre-
sponds toL~10 um, and henceav~10"° J/n?, we obtain
Vin(0)=E;,(0)d~0.3 V, a rather low value. Note that the
corresponding threshold in the case of strong anchoring is
two orders of magnitude higher. From this result, we can
conclude that planar periodic deformations in nematic
samples weakly anchored induced by a low dc electric volt-
age are a clear indication the;+ e33=0. Furthermore, any
dependence of the threshold voltage on the sample thickness
should be a signature of departure from strong anchoring
conditions. Figure 1 shows the nematic director distribution
in ax-z cross section of the cell at an electric field value of
1.5E,(0). Theinitially homeotropic cell is distorted under
the field action and gives rise to planar domains. fihge-
pendence orz appears in the transition region between ho-
meotropic and planar domains and it is merely concentrated
.close to the glass plates. Further, thelistribution shows

I'Ehat the transition starts at the middle of the cell.

An(0) =27 2my/Ld. (32)

IIl. INFLUENCE OF THE DIELECTRIC ANISOTROPY
ON THE MODULATED STRUCTURE
OF FLEXOELECTRIC ORIGIN

Let us consider now the case,=e¢j—¢€, #0. In this

framework, the free energy densitys given by
f=3K(65+ 0%) —eEf x— e,E2 coso. (33

We consider first the case of positive dielectric anisotropy

(e5,>0). By operating step by step as in the casegf0,

we obtain now the free energy densgyas

f 2

K

Ed 1
—— 0~ EQZ cosd, (34

1
2 2
5(0’54— 0’7])— K

g:
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From Eg.(39), beside the trivial solutiomy=0, we obtain

dé,

— =+c?—0?cogb,, (40)

dé

wherec?>)? is an integration constant to be determined by
imposing that the total energy of the sample is minimum.
The wavelength of the modulated structure we are looking
for is

z[pgm]-
3

2w dl,//
A= _,
0 Jc?—02%cogy

Routine calculations give, for th& energy at the zeroth
order ine, the expression

(41)

eEd

2 1
Gozf Ve2—0?cogydy— —c?A—27——, (42)
0 2 K

R T N N N U NRNNNNNNNNNNNNNY
A O N R R N R R N N N R R N L SN SNNNNNNN
A R N N N N R R N N R R NN AN R R AR RN
AR N R N R R R R R R R AR NRNNAY
AR RN R R R R RN RN R R RN AR R RN AR AR

R N N O O O S O e N NN

e e e e e e e e e e e e e S e e e e ]
e e e e e e e e e A S T T S o S R S S S S
| S S N N O e |
I e O O O O S e i
I N N O O O O R

L 5 S S S S R O N R NRRNNN

xtuml> from which the averag&, energy per periodby=Gqy/A is

FIG. 1. Then distribution in ax-z cross section of the nematic easily obtained. By minimizingy, with respect ta?, we get
cell at 1.55,,(0). d=3 um, £=0.3. In the absence of electric field, the equation
the nematic cell is homeotropic with parallel to thez axis.

27 > > eEd
where JO VC -0 COSzt,//dt,b=27T?, (43)

_faEzdz_( E)Z (35  Which definesc?.
Kk \"EJ As it follows from Eq. (41), A— for c>—Q2. In the

limit c?=0Q2, from Eq. (43) we obtainc=(/2)(eEdK).
E.=(m/d)\K/e, is the critical field for the Freedericksz The conditionc?>(? is then a condition on the dielectric
transition[14]. The bulk differential equation obtained by anisotropy of the typ¢9]
minimizing the total energy is

QZ

22
P& (44)

a
QZ Ea<6;:(5
0,66+ 0,5y =—5-SIN20), (36)

Otherwise, the homogeneous nondistorted state is more fa-
which has to be solved with the boundary conditidg), in ~ vored. By means of the elliptical functioris; (k) and E,(k)
the symmetric case under consideration, whexXg,»)  defined by
= 0(&,— n). By substituting expansiofil3) into Eq. (36),

we obtain at the zeroth order & EL(k)= /2 dys
1K) =

2 0 Ji-K2coy

Q
Ooet Oo.y=—SIN(260), al2
E (k)= f V1-Kk?coSydy, (45)
0

6,=0 for n=1/2, (37
and it is possible to rewrite Eq41) and(43) as follows:
1
016t 01,,= Q%01 C0426p), A= 5 4kE (k) (46)
01,+3SiN(260)=0 for n=1/2, (38  and
at the first order ire. 1 &
The solution of Eq(37) is % independent. It is given by ZE,(k)= /_a, (47)
the nonlinear ordinary differential equation k €a

2o 02 respectively, wher&?=Q?/c? is the modulus of the ellipti-
-0 —sin(26,) =0. (399  cal functions. Equatio47) determinek=k(e,/€;), when
dez 2 the physical parameters of the nematic liquid crystal are
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FIG. 2. Behavior ok vs €,/ € .

known. As it follows from Eqs(45) and (47), in the limit
€,—0, k—(m/2) e/ €5. In Fig. 2, we showk vs €,/€} .
Once k has been determined, E@46) gives A vs Q
=m(E/E.). In Fig. 3, the produch Q vs e,/ €} is reported.
The tilt angle profile, at the zeroth order én is given by

K 0o(€) dy y
o V1-K%coSy '

and it is plotted in Fig. 4, fok=0.1 andk=0.95. As it is

(48)

evident from this figurefy(¢) is, practically, a linear func-

tion of the reduced coordinatg for all values ofk. At the
zeroth order ire, we have that the minimum value of ti

energy, relevant to the modulated structure is, as it follows

from Eqgs.(42) and (43),

Guso= —3C°A. (49)

At the same approximation, th& energy of the homoge-

neous orientation, witl®=0, is

20 |
(l
/
15 + /
G
Z 10
5 —+
,'/
0 1
0 0.5 1
€/’

FIG. 3. QA vs e,/ €; .
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FIG. 4. Tilt angle 6y(&), at the zeroth order in the expansion
parameter, vs the reduced coordinétd, for k=0.1 (dashed ling
and k=0.95 (solid line), which correspond ta,/e} =0.004 and
€./€x =0.742, respectively. Note thap(£) is, practically, a linear
function of £ for all values ofk.

GHOZ_%QZA. (50)
Sincec=(), it follows that Gy 5o=<Gyg, i.€., at the zeroth
order in the expansion parameter, the modulated structure is
stable with respect to the homogeneous one.

Let us consider now the ener@y at the first order in the
expansion parameter. By substituting Eg3) into Eq. (34)
and taking into account thafy= 6y(§) we obtaing=gg
+e&04, Where

2 eEddé,

1/(dé,
K dg

90=7| dg

eEddo,

K o

gl_d_é- g€ (51

1.,
+§Q 0,SiN(26,) —

It follows that G=G,+ eG4, where

A (1/2
Go= || godean,
0 —1/2

A (112 A
0 J-1/2 0

A simple calculation allows one to show that

A (12
0 J-12

To this end, we have to just note that

(53

dby 96, 9
0001 ( (54)

deo) d?6,
de g g "ag) "

ald_f 0 d_gz

By substituting the latter expression i@, Eq. (51) yields
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a9 dbg N eEd g6,
gl—a—g(ald—g)— 1(d—§2—§Q SIr\z(Zgo))—Ta—g.
(55

The second addendum of this expression is identically zero

becausdy(¢) is a solution of Eq(39). Consequentlyg, can
be written as

PHYSICAL REVIEW E67, 061708 (2003

15 -

F 10+
_d p do, eEd 56
91=5¢| %l 9z ~ & /| (56)
. 5 P
Since 0.(é+A,n)=0.(&7m) and [dO/dE)(E+A,n)
=(d6y/d€)(&,n), the integral ofg, over one spatial period
vanishes identically. Therefor&, reduces to the contribu-
tion connected with the anchoring energy. At the first order 0 ! |
in ¢ and taking into account Ed49), the energyG of the 0 0.5 1

modulated structure is

1 A
GMS:_EczA_SfO CO§00(§)d§, (57)

while the G energy of the homogeneous pattern is
Gu=—30%A—¢A. (58)

The modulated structure is stable onlyGi,s<Gy . This
condition yields

c?—02>2¢(sirf6,), (59

where

1 (A
<...>:Kfo . dé. (60)

€/ 6"

FIG. 5. Reduced wavelength at the instability threshbld vs
€./€x , for a nematic homeotropic cell with=d/L=0.1.

1-k?

2
Ap=4 E,(k)= ;\/1— K’E1(K)Ah(0). (63

In the limit e,— 0, the latter equation give§,,=2x/ e, as
obtained in the case of a compensated nematic. The depen-
dence ofAy, on the ratioe,/€} is shown in Fig. 5 for a
nematic cell withe=d/L=0.1. The transition between the
homogenous state and the stripe pattern state is a second-
order transition and close te,=¢€5, Ay, varies as (1

— €,/ €5)Y2 Note that wherk— 1, the elliptic integraE (k)
diverges logarithmically. Figure 6 showg;,/E(0) vs
€./€x , which could be useful to compare our theoretical
predictions with experimental data. However, no experimen-

Equation (59) defines the threshold field above which the tal data are available in literature, for thg,=Ey(ea/€;)
modulated structure is stable, for a given anchoring energgiependence, relevant to periodic instabilities of flexoelectric

w=(K/d)e. As it has been underlined abow&( ¢) is, prac-
tically, a linear function ofé&, for all k. Consequently
(sirfhp)~1/2. In this framework, from the definitiork

=(/c and using Eq(59), we obtain the value of) at the
threshold:

e, (61

from which the threshold field is calculated,

2 e K?
Ech; E—amEth(O)- (62

Ein(0) has been defined in Eq30). Since, as discussed

above,k— (m/2)+\/€e,/ €5 when e;—0 thenEy, reduces to

Ein(0): thethreshold field for a compensated nematic liquid

crystal given by Eq(30).

From Eq.(46), it follows that the reduced wavelength at

the threshold is

origin in nematic liquid crystals. The first attempt to relate

10
s
[ S
r
=
0 1
0 0.5 1
€/6&"

FIG. 6. Reduced threshold fiek, /E,(0) vs e,/ €} .
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the dielectric anisotropy with the threshold field for the
flexoelectric instability has been performed by Bargikal.
long ago[18,19. Unfortunately, for the compounds investi-
gated in Refs[18,19, the flexoelectric coefficients have not
been precisely determined. Consequently, are unknown

and we cannot fit the threshold voltage dependence on the
dielectric anisotropy using our results. Moreover, the nematid’

cells used by Barnilet al. have strong planar anchoring, i.e.,

PHYSICAL REVIEW E 67, 061708 (2003

()= fOW/Z\/l—KZ sirtydy, 67)

here k2= Q?/C2.

d>L, and therefore their results cannot be used to test our

model. However, as it follows from E@48), the modulusk
depends only o®,/€; . Hence, from Eqs(62) and(63) we

IV. FINAL REMARKS AND CONCLUSION

To observe experimentally the predicted instability, spe-

derive that the threshold voltage and the wavelength of th%ial cautions have to be taken. In fact, as underlined above,

deformation at the threshold depend on the thickness of th
sample as/d, as in the case of a compensated nematic liqui

crystal. These dependencies could allow to test, experimel?:—

tally, our model.

In the analysis reported above we have assueyedD. In
the opposite case, of negative dielectric anisotropy, the d
electric contribution to they energy density given by Eg.
(34 is  +(1/2)Q%c06, where Q%=|e,|E2dYK
=(wE/E.)? and E.=(m/d)\JK/|e,]. In this case on the
right-hand side of Eqs(36)—(38) Q2 is changed to— 0?2,
and Eq.(39) takes the form

d?¢, 02

By operating as in the case ef>0, instead of Eq(40) we
obtain now

dé,
dé

JCZ—0Zsirto,,

from which we derive thatC?>>?2. In the present case,
condition (44) becomes

(65

(66)

|6a|<522<2

The main equations of the problem are identical to the onex

reported above witli, (k) andE,(k) changed to

dy

w2
&i(k)=

ur analysis works well only if the nematic liquid crystal can

e considered as a perfect insulating material. In the opposite
ase, when ions are present in the liquid crystal, it is neces-
sary to take into account that the electric field is no longer
constant across the sample, due to the double layer formation
of ionic clouds close to the electrodgXd]. The presence of
the ions is equivalent to a renormalization of the effective
bulk electric field and of the effective anchoring enefgg—

23]. To observe our periodic instability, it is necessary to
avoid selective ions adsorption and to use a pulsed square
electric field with a frequency such that the ions cannot par-
ticipate in the phenomenon.

In conclusion, we have theoretically analyzed the possi-
bility to observe modulated structures of flexoelectric origin
in bounded nematic liquid crystal samples. Our investigation
has been performed by assuming that+ e33=0, and that
the anchoring energy of the solid substrate—nematic liquid
crystal interface is very weak and can be treated as a pertur-
bation. In this limit, the tilt angle profile, formed by the
director with the normal to the limiting surfaces, can be ex-
panded in power series ef=d/L, whereL=K/w is the
extrapolation length. We have determined the threshold field
for the spatially modulated instability, and the wavelength at
the threshold. The threshold field varies é&d, while the
wavelength at the threshold goes &k The influence of the
dielectric anisotropy on the phenomenon has also been ana-
yzed. The instability can arise only if the dielectric anisot-
ropy is lower than an upper limit defined from the material
constants of the liquid crystal compound. In the case of an
unbounded nematic liquid crystal sample, our results confirm
the prediction published long ad@a,5,6).
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